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Cell-pattern sensitivity to box configuration 
in a saturated porous medium 
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Steady small-amplitude thermal convection in a fluid-saturated, infinitely extended 
porous layer is investigated theoretically in the wavenumber range 1/42-1. It was 
shown that the point of multiple bifurcation Ra, = ( 3 / 4 2  + 2) n2, a, = 2-0.25 leads 
to secondary bifurcation when the wavenumber decreases. 

As a result a new branch of a stable, complicated, three-dimensional flow in the 
square cell was discovered for a close to a,. This branch joins two adjacent branches 
of three-dimensional flows emanating from the trivial solution and causes their 
stability transition at the branching points. 

1. Introduction 
Although natural convection in a porous medium has received considerable 

attention since the earliest work by Horton & Rogers (1945), there are still some points 
of interest and contention. The critical Rayleigh number Ra = 4n2 for the onset of 
convection in porous media was determined by Lapwood (1948). Infinitesimal 
convection occurring in porous media has been studied for Rayleigh numbers close 
to 4n2 by means of a perturbation method in two-dimensional physical space by Palm, 
Weber & Kvernvold (1972) and by Joseph (1976), and in three-dimensional space by 
Zabib & Kaseoy (1976). 

Recently Rudraiah & Srimani (1980) have made an extensive analysis of the 
physically preferred cell pattern for convection in a porous medium in the spirit of 
Malkus & Veronis (1958). They observed that at Ra = 4x2 three-dimensional flow of 
square cells with wavenumber a = 1 / 4 2  and two two-dimensional rolls with a = 1 
can occur. 

We have completed their studies by an analysis of small-amplitude solutions of the 
Darcy-Boussinesq equations for wavenumbers in the range l - l /d2 .  It was found 
that Ra, = (3 /d2  + 2) n2, a, = 2-0.25 is the point of multiple bifurcation and that a 
variation of the wavenumber a leads to secondary bifurcation. New branches of stable 
and unstable three-dimensional flows were discovered for Rayleigh numbers close to  
Ra,. We have examined the locaI influence of the difference of the horizontal 
wavenumbers on the existence and structure of the solutions. 

2. Formulation of the problem 
We consider a rectangular box of fluid-saturated porous material heated from 

below. The horizontal plates of the box are non-permeable and perfectly insulating. 
Heat transfer and fluid motion are described by the Darcy-Boussinesq equations 
presented here in the non-stationary dimensionless form 

-u-Vp+RaOk = 0, V - u  = 0, (2.1) 
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with the following boundary conditions : 

on the upper and lower planes 

(2.3) 

(2.4a) 

( 2 3  ae 
a Y  

u y = o ,  - = o  y = o , - .  (2.4b) 

where u = (uz, uy, uz), 6 and p denote the velocity vector, temperature and pressure 
respectively, and k is the vertical unit vector. The Rayleigh number Ra is defined 
in Gupta & Joseph (1972), where it was denoted by R, and a,, u2 are the wavenumbers. 

Straus & Schubert (1979) showed that it is more convenient to replace (2 .1)  by a 
single equation for the potential @ defined by 

Hence the system of equations (2.1) and (2 .2)  assumes the form 

V2@ = - Ra 8 ,  

The boundary conditions on 0 and CP are 

a w  a w  
a x 2  ay2 a22 
-+- = - = 0 ( z  = 0, l ) ,  

Further, (2.5) and (2 .6)  can be reduced to a single equation for the potential @: 

(2.7) 
with the following boundary conditions: 

on the horizontal planes 

on the sidewalls 

(2 .7a)  

(2.7b) 

( 2 . 7 ~ )  
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The linearization of (2.7) for the trivial solution leads to the linear self-adjoint 
eigenvalue problem 

a2q5 a2q5 
V4q5+Ra-+- = 0, (2.8) 

ax2 ayz 

with homogenous boundary conditions corresponding to (2.7 a-c). The eigenvalues of 
(2.8) have the form 

(2.9) 
[(jc~,)~ + (ma2)2 + n2I2 Ra = x 2  

@,I2 + (ma2)2 ’ 
and the corresponding eigenfunctions are given by 

q5 = sin (nxz)  cos ( jxa,  x) cos (mxa2 y). (2.10) 

The first eigenvalue is the critical Rayleigh number for the onset of convection in 
a porous layer. Ra assumes the minimal value 4x2 when n = m =j = 1 and for the 
following wavenumbers : 

a1 = 1, a2 = 0 (two-dimensional rolls), 

a, = 0, a2 = 1 

a, = a2 = 1 / 4 2  

(Ra is a double eigenvalue), 

(three-dimensional square-cell, Ra is a single eigenvalue). 

It is an  interesting fact that  the second eigenvalue is Ra = 4 . 5 7 ~ ~  and has the following 
eigenfunctions of the form (2.10), also for m = n =j = 1 depending on the 
wavenumbers : 

a, = 1 / 4 2 ,  a2 = 0 (two-dimensional rolls), 

a, = 0, 

a, = a2 = 1 

a2 = 1 / 4 2  (Ra is a double eigenvalue), 

(three-dimensional square cell, Ra is a single eigenvalue). 

For a, = 2-0.25 the first and second eigenvalues coalesce a t  Ra, = ( 3 / 4 2  + 2) x 2 ,  hence 
(Ra,, a,) becomes a triple bifurcation point with null-space N :  

(2.11) 1 = sin ( x z )  cos (xa, z), 

q52 = sin ( x z )  cos (xa, y), 

q53 = sin ( x z )  cos (xa, x) cos (xa, y). 

An important illustration of our considerations is given by Straus & Schubert (1981) 
because the point (Ra,, a,) relates to  the intersection point of the curves (a) and (f) 
in their figure 2. This figure gives also examples of other points of multiple bifurcation, 
but they correspond to  higher modes. 

The trivial solution loses the stability of the smallest critical Rayleigh number, and 
a new steady-state solution appears. It is the purpose of the following sections to  
derive these solutions and to  analyse their stability. 

3. Analysis 
Recently Coullet & Spiegel(l982) specified two general approaches to  the bifurcation 

problem in thermal convection : namely asymptotic procedures and the direct method 
of modal expansion and reduction to normal form. However, the bifurcation problem 
under consideration is degenerate, and hence both of these approaches would lead. 
to long and complicated calculations. We propose to use the Galerkin method with 
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controlled series truncation. We expand the solution @ of the problem (2.7) in the 
Fourier series m 

where 

@ =  Z @ n j m F n j , ,  (3.1) 
n,  j, m 

1/2 sin (nrcz) 

21/a sin (nrcz) cos (ajnx) 

21/01 sin (nnz) cos (amny) 

21/20! sin (nnz) cos (ajnx) cos (amny) 

(j = m = 0), 

(j =I= 0, m = 0), 

(j = 0, m = 0), 
Fnjm = [ 

(j =k 0, m =k 0). 

The dimension of the finite Galerkin space will be chosen in such a way that the 
second-order approximation of small amplitude steady-state solutions will be secured. 
In  order to explain the choice of the appropriate modes, consider (2.7) in the general 
form 

Assume an approximate solution $ of (3.2) in the form (see Appendix) 

F ( @ , R a )  = 0 (3.2) 

3 = E @ ~ + E ~ @ ~ ~ ,  Ra = Rao+e2, (3.3) 

where @ I  = Dl41 + p Z $ Z + P 3 $ 3 ’  (3.4) 

The task is to determine the coefficients pl, p2, p3 and the function @ I I .  

The function oII follows from the equation of the second perturbation 

F @ @ I I  -IF - 2 @ @ @ I  01. (3.5) 

The right-hand side of the above equation is in this case the linear combination of 
the following modes : 

@ZOO> %lo> @ Z O l ?  @2111 @2127 @221, @220, @ z o r  (3.6) 

Hence the finite basis for the Galerkin method providing the second-order approxi- 
mation of the small-amplitude solutions of (2.7) contains the eigenmodes 
(1  10 ,101 ,111)  and additionally (200,210,201,211,212,221,220,202). As a result we 
get eleven differential equations in the form 

d @ l l ~  

dt 

d @ l ~ l  

dt 

= a@,,, + . . . , 

= a@,,, + . . . , 
(3.7) 

where . . . denotes nonlinear terms. 
First we consider the steady-state solutions of the system (3.7). Eliminating the 

modes (3.6) corresponding to the second-order term, we obtain the following system 
of three cubic equations for the unknowns x = Qll0, y = z = @,,,: 

z(-u++b22+cy2+d22) = 0, 

y ( - a + c x 2 + b y 2 + d z 2 )  = 0, 

z( - e + f x 2  +fyZ + 9.3)  = 0, 
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where 

a2Ra - n2( 1 + a2)2 
1 +a2 

a =  , 

2a2Ra - n2( 1 + 2a2)2 
1 + 2a2 

e =  f 

b = +as7c4, 

asn4 
c=-[  2 1-  

n2(7 +a2) (7a2+5) + = 
[‘-2(1 +a2) (a2Ra-n2(4+a2I2) 5a2Ra-n2(4+5a2)2 

1 64n2( 1 + a2)  
9 = 2a9~4 i -  [ a2Ra-4n2(1 +a2)2 

The resulting system can be expressed as a set of predator-prey equations and has 
been studied by biologists (May & Leonard 1975). 

In  $4 we shall analyse the properties of the solutions of these equations and their 
stability. 

4. Solutions for rolls and cellular cells 
It is easy to establish that (3.8) have the following set of solutions: 

a 
b 

( i )  x2 =-, y = z = 0, 

a 
b 

(ii) y2 = - x = z = 0, 

2 = 0, 

(v) 2 2  = y2 =ag, - ed 2 2  = (b+c)e-2fa 
J J 3 

where J = (b+c)g-2df, 

eb - af x = o ,  z2=- 

bg-df’ bg-df’ 
ag-ed 

(vi) y2 = ~ 

eb - af (vii) x 2 - - ~ ag-ed y = o ,  z2=- 
bg-df’ bg-df’ 

The solutions (i) and (ii) correspond to two-dimensional rolls, the solution (iii) 
describes a three-dimensional flow that is a superposition of perpendicular rolls. The 
solutions (iv)-(vii) are also three-dimensional flows. 
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Further, we consider a near neighbourhood of the point (Ra,,a,). Because the 
coefficients b, c, d ,  f, g and the Jacobian J are positive and smooth functions of the 
wavenumber and of the Rayleigh number in the neighbourhood of (Ra,, a,), we omit 
the standard perturbation analysis and calculate these coefficients at (Ra,, a,) : 

(4.1) I b = 0.177 ... x4, c = 0.257 ... 7c4, 

d = 2.718 . . .x4,  f = 0.38 ... x4, 
g = 9.543 ... x4, J = 2.09 ... R’. 

Therefore we consider the dependence of x, y, z and Ra only on a and e. Not all 
solutions exist for any value of wavenumber a and of the Rayleigh number Ra. The 
branches of solutions (i)-(iii) appear when the Rayleigh number crosses the first 
eigenvalue x2( 1 + a,),/,,. The fully three-dimensional solution (iv) can exist when the 
Rayleigh number exceeds the second eigenvalue x2( 1 + 2 ~ ~ ) ~ / 2 a ~ .  The solutions (v), 
(vi) and (vii) bifurcate with non-trivial solutions (iii), (ii) and (i) (the secondary 
bifurcation). Elementary calculations provide the coordinates of the points of 
secondary bifurcation : 

e x = y = o ,  2 2 = -  

Bg-2d’ 9’ 

g-Bd 
Ra, = A- 

a 
5 2  = y2 = - z = 0, 

2f -B(b+ C )  Ra, = A 
2Bf-2(b +c)  ’ b + c ’  

f -Bb  a 
Bf-2b’ b 

R a , = A -  x 2 = - ,  y = z = O ,  

where 
1 +2a2 B = -  x2( 1 + a,) ( 1  + 201,) 

A =  
a2 1+a2 ’ 

The existence of branches of solutions (v)-(vii) requires that the wavenumber should 
satisfy a < a,. These solutions disappear at the secondary bifurcation points, i.e. (vi) 
and (vii) at Ra, and (v) at Ra,. For Rayleigh numbers larger than Ra, solutions (i)-(iv) 
exist ; however, only two-dimensional rolls are stable. To illustrate these considerations 
we present (figure 1 a) the dependence of the solutions (i)-(vii) on the Rayleigh number 
for the wavenumber a = 4 0 . 7  calculated numerically with the use of coefficients 
(4 .1 ) .  

The values Ra,, Ra, and Ra, are 

Ra, = 4.138 ... x2, Ra, = 4.156 ... x2 ,  

When the wavenumber increases to  a,, the Rayleigh numbers Ra,, Ra, and Ra, tend 
to Ra,, and a t  a = a, the branches (v)-(vii) vanish. For wavenumbers a larger than 
a, there are no branches (v)-(vii) and no points of secondary bifurcation Ra,, Ra, 
and Ra,. The dependence of the solutions (i)-(iv) on the Rayleigh number for 
a = 40.71 is presented in figure 1 ( b ) .  A comparison of figures 1 (a) and ( b )  suggests 
that the flow pattern in the box filled by porous material can be essentially influenced 
by the box dimensions for Rayleigh numbers close to critical. 

The results of the stability analysis of the branches (i)-(vii) are presented in $5. 

Ra, = 4.190 .. . n2. 
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Cell patterns in a saturated porous medium 

FIGURE 1 .  ( a )  Amplitudes of the solutions (i)-(vii) 2)s. the Rayleigh number for a = d0.7: -, 
stable; ---, unstable solutions. (6) Amplitudes of the solutions (i)-(iv) us. the Rayleigh number 
for a = d0.71: -, stable; ---, unstable solutions. 
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5. Stability 
I n  order to analyse the stability of small-amplitude solutions we will return to (3.7). 

The expansion (3.3) suggests that  the Fourier coefficients Gllo, Glol, Glll are O(B)  and 
that the rest of coefficients are 0 ( e 2 )  for small E = (Ru-Rao)l. Because a and e are 
O ( E ) ,  then, introducing a new timescale r = c2t ,  we separate the system (3.7) into two 
parts: three differential equations for x = Gllo, y = Glol, z = Glll and eight algebraic 
equations. Eliminating the coefficients (3.7) from the differential equations we get 

dx 
- = -x ( -a++x2+cy2+dz2) ,  
dr  

I - dy dr  = - y ( -u+cx2+by2+dz2) ,  

dz 
- = -z(  
dr  - e +fx2 +fy2 + 9.9). J 

This system of equations has interesting connections with those found in the 
literature. 

If we restrict our considerations to the two first equations and assume z = 0, then 
the resulted system of equations becomes the same as that obtained by Segel (1962) 
for the nonlinear interaction of two disturbances in B6nard convection. We also 
obtained these equations in analysing stability of the two-dimensional Darcy- 
Boussinesq convection (Borkowska-Pawlak & Kordylewski 1982). Using the phase- 
plane technique i t  is not difficult to determine the stability of steady-state flow 
pattern and the global behaviour of transient motions in this case. 

If we introduce new variables 

6 = x 2 ,  p = y 2 ,  y = 2 2 ,  s = 2 7  

the original system of equations (5.1) assumes the form 

I 
d6 
ds 
- = -6(-U++bs+cp+dy), 

dY 
- ds = - y ( - e + f a + f p + g y ) ,  

where 6, p and y are determined only in R:. 
These equations have a similar structure to the system of equations analysed by 

May & Leonard (1975) for the population problem. However, in this case the 
coefficients do not obey their rules; hence the behaviour of the solutions is different. 
The system (5.2) has a trap, i.e. in R: there is a bounded region B such that every 
solution of (5.2) eventually becomes trapped by B .  This conclusion results from the 
fact that for every fixed value of the parameters a and e the derivatives d&/ds, dplds 
and dylds become negative for sufficiently large 6+p+  y. 

I n  May & Leonard’s paper an important role was played by the product P = 6py, 
which remained asymptotically invariant. I n  this case P diminishes quickly for a 
sufficiently large 6+ p + y because we have 

d 
- [lnP] = - [ - 2 ~ - e + u + b + f ( 6 + p ) + y ( 2 d + g ) ] .  
ds 

We may interpret this as attracting to the fixed points. 
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A superficial analysis of (5.2) shows that for a < 0 and e < 0 only the trivial solution 
is attracting. If a < 0 and e > 0 (a > ao) then eventually a non-stationary solution 
is attracted to one of the two-dimensional steady states (i) or (ii). I n  the opposite 
case a > 0 and e < 0 (a  < ao) only the solution (iv) is attracting. 

The rigorous stability analysis of the steady-state solutions (i)-(vii) was made by 
calculations of the eigenvalues of the linearized form of (5.2). The results of analysis 
are shown in figures 1 (a ,  b ) .  

A predominant role is played by the orthogonal two-dimensional rolls ( i )  and (ii). 
The same conclusion follows from the numerical analysis of Straus & Schubert (1979). 
However, i t  is not easy to make a more detailed comparison with their works, because 
they analysed stability of steady finite-amplitude thermal convection for large values 
of the Rayleigh number. 

6. The Nusselt number 
We recall the definition of the Nusselt number as the ratio of the actual heat 

transport and the heat transported only by conduction for the given temperature 
difference between the hot and cold planes: 

I n  terms of modes of the Fourier series the Nusselt number is expressed by 

o o m m  11a 

NU = 1 --x c X nClrnenlm j jol’” cos (am-xy) cos (ajm) dx dy, 
n-0 j-1 rn-i 0 

where 
d 2  (j= m = O ) ,  

c j m =  2 4 u  ( j + O , m = O  or j = O , m + O ) ,  i 2 4 2 a  (j =# 0 , m  =# 0).  

This integral is non-vanishing only f o r j  = m = 0. Using (2.5) for the temperature 8 
and the potential @, the Nusselt number can be written as 

-3 m 
I L  

N u  = l-- X n3Qnoo. 
Raa2 

Because of the truncation of the Fourier series to  (3.6), the above expression reduces 
to  the form 

In the case a = 1 ,  which was considered by several authors (e.g. Straus & Schubcrt 
1979; Rudraiah & Srimani 1980; Zebib & Kassoy 1978) we have 

For the stable two-dimensional rolls emanating a t  Ra = 4n2, we found that the 
Nusselt number is given by 
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For the unstable three-dimensional motion (iii) emanating from Ra = 4n2, which is 
superposition of the two-dimensional rolls, the Nusselt number is 

28 Ra - 4n2 
17 Ra 

Nuzd = 1 +- 

The formulae (6.4) and (6.5) indicate that two-dimensional rolls transport more heat 
than the three-dimensional cell flow. 

When a + 1 the Nusselt numbers for the abovementioned flows are given by the 
following formulae : 

Ra-n2(1 +a2)2/a2 

a3Ra 
NUZd = 1+2 > 

a4 + 601, + 7 Ra - n2( 1 + a2)2/a2 
a4 + 7a2 + 9 

NuBd = 1+2 
a3Ra 

By comparing the Nusselt numbers for the two- and three-dimensional motions, we 
conclude that two-dimensional roll configurations are the physically preferred cell 
pattern, as they transport more heat. 

7. The various horizontal wavenumbers 
When the wavenumber in the horizontal directions are different then analysis 

providing the predator-prey equation (3.8) remains much the same. There are some 
differences, viz the coefficients of x, y and z are 

a:Ra-n2(1 +a:), 
1 +a: 

tL:Ra-n2(1 +at), 
1 +a: 

a, = 

a2 = 9 

(a: + a:) Ra - n2( 1 +a; + a!), 
1 +a:+a: 

e =  

Consequently in the solutions (i) and (ii)  of the new system of equations the 
expressions in numerators are replaced by a, and a, respectively - and similarly for 
the solutions (vi) and (vii). The form of solution (iv) is identical, while (iii) and (iv) 
are some linear combinations of e ,  a, + a, and a, - a,. 

Thus the bifurcation point Ra, ‘divides’ into the following points: 

Ra,, 

Ra,, 

Ra,, 

bifurcation point of solution (vi); 

bifurcation point of solution (vii) ; 

bifurcation point of solution (v). 

Similarly, the bifurcation point Ra, ‘divides’ into the points 

Ra,, 

Ra,, 

disappearance point of solution (vi); 

disappearance point of solution (vii). 

This situation is presented in figure 2. 
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(ii) 

/ Amplitude t 

FIGURE 2. Schematic pattern of the amplitudes of the solutions (i)-(vii) 
wus. the Rayleigh number. 

8. Summary 
It was found that the point of multiple bifurcation Ra, = (3/2/2 + 2) n2, a, = 2-0.25 

for the Darcy-Boussinesq equation describing thermal convection in a porous box 
leads to secondary bifurcations with a small wavenumber rise. As a result, a branch 
of stationary solutions was discovered that proves that a continuous transition of 
pattern flows from two-dimensional to three-dimensional structures is possible (and 
vice versa) with Rayleigh-number variation. A similar behaviour of spatial structures 
due to bifurcation of steady states was also observed in chemical kinetics by Keener 
(1976). 

An analysis of the bifurcation diagrams leads to the conclusion that the box size 
strongly influences the small-amplitude convective flow in porous media. When the 
wavenumber increases to ao, the points of secondary bifurcation Ra,, Ra,, Ra, tend 
to Ra,. When the wavenumber decreases, the point of secondary bifurcation Ra, 
escapes to infinity. For example, numerical calculations not presented in this paper 
showed that for a = l/d2 there exist only two points of secondary bifurcation Ra,, 
Ra,. 

A difference in the horizontal wavenumbers does not induce new solutions ; what 
was observed was only the modification of the structure of the existing solutions. It 
should be emphasized that the results obtained for fixed a, varying Ra correspond 
to flow changes in a specific box, while alternating a corresponds to changing the box 
dimensions. 
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Appendix 
Consider (2.7) in the form 

I!(@, Ra)  = 0 

where F is an analytical mapping in an appropriate space. 
Let (O,Rao) be a non-isolated solution of (A l ) ,  suppose that the linear operator 

F,(O,Ra,) has null space N spanned by {$1,$2,$3},  and that the null space N* of 
F,$(O, Ra,) is spanned by {$:, $:, $,*}. The operator F has the following properties: 

( a )  F(0,Ra) = 0 ;  

( b )  Ra,) $$,$:) = 0 (i = 1,2 ,3) ,  

where 

The bifurcating solutions can be expanded in power series 

I Ra = Rao+wl+e2r2+ ... , 
@ = E@1+€2@2+. . .  . 

Inserting (A 2) into (A 1 )  and assuming the Taylor series for F(@, Ra) yields 

Because of ( b )  we get 
rl = 0, 

and (A 4) assumes the form 

F,(O, Ra,) @2 = -Po@ Q1 

where @2 exists and docs not belong to N .  

perturbation equation including the normalization condition 
Further, the coefficients pl, p2, p3 and r2 would be calculated from the third-order 

p:+p;+p; = 1 .  

In  our approach the above condition is neglected ; hence r2  = 1, and the approximate 
solutions include only the first two terms in the expansion (A 2). 
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